Core Facilities

Internal Facilities

Columbia University Cryo-Electron Microscopy Center (CEC)

The Columbia University Cryo-Electron Microscopy Center (CEC) provides researchers with training and access to the advanced instrumentation, data collection capacity, and processing support required to incorporate cryo-electron microscopy into their studies. The CEC supports instruments at the Medical Center, Zuckerman Institute, and New York Structural Biology Center campuses, but operates as a single core facility, allowing users to use instruments across locations.

Use of the Cryo-Electron Microscopy Center is available to all Columbia-affiliated researchers, although users must undergo training and receive project approval before instrument time can be scheduled. External users may utilize the resources of the facility if scanning time is available. New users should contact the facility for more information.

Precision Biomolecular Characterization Facility

The Precision Biomolecular Characterization Facility (PBCF) provides access to state of the art biophysical and biochemical instrumentation focused on the study of conformations, activities, and assembly of biological and other macromolecules. The facility, housed in Havemeyer Hall, includes many instruments including a multi-function plate reader, circular-dichroism, isothermal titration calorimeter, surface plasmon resonance, multi-angle light scattering, lifetime fluorimeter as well as a several centrifuges and biochemical equipment. The PBCF aims to assist researchers to deliver professional quality data for publications and grant proposals. User training and usage as well as fee-for-service is available. Corporate users are welcome.

Mass Spectrometry Facility

The mass spectrometry facility in the Department of Chemistry is designed to provide chemists with valuable data quickly and easily. Users can monitor reaction progress by SFC-MS or TLC-MS, identify isolated products by direct injection of solutions into a mass spectrometer, analyze neat oils or insoluble solids with the atmospheric solids analysis probe (ASAP), and characterize large molecules, polymers, and biomolecules with the MALDI TOF. Researchers can also quantify sample concentrations and determine enantiomeric ratios with SFC-MS or SFC-MS/MS. Interested researchers should contact Dr. Brandon Fowler, manager of the mass spec facility, for instrument training or submitting samples for accurate mass analysis/high resolution mass spec.

Proteomics Shared Resource

The Proteomics Shared Resource supports both discovery-based and targeted proteomic analysis. The facility provides cancer researchers access to the state-of-the-art mass spectrometers and software for qualitative (e.g. protein identification), quantitative (e.g. relative quantification), and post-translational modification (PTM) analyses. Services include (1) mass determination of purified proteins/peptides; (2) identification of purified protein complexes; (3) site-targeted PTM mapping on purified proteins, targeted MRM quantification; (4) global proteome analysis, subproteome isolation and identification; and (5) large-scale PTM characterization. The facility director and technical personnel have extensive expertise in mass spectrometry-based techniques, and will provide consultation on experimental design, data analysis, and troubleshooting. We encourage researchers to contact us prior to submission of samples to discuss sample preparation, experimental design, and potential outcomes of research projects.

Quantitative Proteomics and Metabolomics

The proteome is the expressed protein complement of a cell, matrix, organelle, tissue, organ, or organism. Similarly, metabolomics is the large-scale study of the global sets of small molecules in cell and tissues. We specialize in quantitative proteomics and metabolomics using mass spectrometry to define differences in expression among different biological states (e.g., control vs. treatment, healthy vs. disease, specific genotype vs. wild type). A wide variety of sample types can be processed including cells, tissues, organelles, biofluids, and affinity preparations (animal, plant, bacterial, protest, yeast, insect, and patient samples are routinely studied). We welcome collaborations with academic and industry partners leading to new scientific opportunities and funding.

External Facilities

CUNY Advanced Science Research Center

The City University of New York’s Advanced Science Research Center (ASRC) is a University-wide venture that elevates CUNY’s legacy of scientific research and education through initiatives in five distinctive, but increasingly interconnected disciplines: Nanoscience, Photonics, Structural Biology, Neuroscience and Environmental Sciences. The center is designed to promote a unique, interdisciplinary research culture with researchers from each of the initiatives working side by side in the ASRC’s core facilities, sharing equipment that is among the most advanced available.

New York Structural Biology Center

The New York Structural Biology Center (NYSBC) is an extraordinary consortium representing nine renowned academic research institutions that is recognized as the most comprehensive center for structural biology in the US. NYSBC conducts research, offers educational symposia and classes, and provides access to its advanced instrumentation and expertise in Cryoelectron Microscopy, NMR and X-Ray Crystallography to faculty and students from its member institutions. Its resources include: seven microscopes, including three Krios microscopes with direct detectors, and a dual beam scanning FIB/SEM microscope; eight NMRs with cryoprobes, including two at 900 MHz, a dynamic nuclear polarization magnet and 800 MHz magnets for both solution- and solid-state work; and a new microdiffraction beamline, NYX, located at NSLS-II at the Brookhaven National Laboratory (BNL). Its fully accredited graduate-level courses include: NMR Spectroscopy of Macromolecules; Cryoelectron Microscopy of Macromolecular Assemblies; and Biomolecular NMR Spectroscopy. Columbia University was a founding member of NYSBC which opened its 45,000 square foot facility at 133rd Street and Convent Avenue in 2002, and the CU faculty has full access to NYSBC.

New York Genome Center

The New York Genome Center is an independent, nonprofit academic research organization at the forefront of transforming biomedical research and clinical care with the mission of saving lives. A collaboration of renowned academic, medical and industry leaders in New York and other partners throughout the country, the New York Genome Center focuses on translating genomic research into clinical solutions for serious diseases. New York Genome Center member institutions (including Columbia) and partners are united in this unprecedented collaboration of technology, science, and medicine. The Center advocates and educates, sharing its findings and discoveries with the scientific, medical, and thought leadership communities. It integrates genomic research with cutting-edge technologies and leading physician-scientists so that patients around the world can benefit from more effective clinical treatments.